115 research outputs found

    Introductory Chapter: Fluid Flow Problems

    Get PDF

    Antepartum transabdominal amnioinfusion in oligohydramnios - a comparative study

    Get PDF
    Background: The purpose of this study was to evaluate the role of antepartum transabdominal amnioinfusion in oligohydramnios with the view to improving pregnancy outcome in oligohydramnios, a serious complication of pregnancy that is associated with a poor perinatal outcome and complicates 1-5% of pregnancies.Methods: The study comprised of a prospective analysis of 130 pregnant women with oligohydramnios, divided into two groups, the study and control group of 65 patients each and were similar with regard to age, gravidity, parity, gestational age. TAA was performed on all patients in the study group and the results were compared and analyzed.Results: Mean gestational age at first treatment was 29.98 weeks in study group. Mean pre-procedure amniotic fluid index was 4.01 and post-procedure was 12.49. A total of 106 infusions were done on 65 patients (mean1.63). Mean latency period in study group was 49.53 and in controls 26.49. There was significant decrease in fetal distress in patients in study group. 30 % of patients needed caesarean section in study group compared to 60% in controls. Number of preterm deliveries was 18 and 45 respectively in study and control groups. 61% of newborns in the study group weighed more than 2.5 kg compared to only 24% in control group. Neonatal ICU admissions and newborn deaths were lesser in study group.Conclusions: Transabdominal amnioinfusion is an extremely useful procedure to reduce complications arising from oligohyramnios. It significantly increases the latency period, decreases the occurrence of fetal distress preterm deliveries, need for caesarean or instrumental deliveries, improves birth weight of the newborns and significantly reduces the neonatal morbidity and mortality

    Magnetite Molybdenum Disulphide Nanofluid of Grade Two: A Generalized Model with Caputo-Fabrizio Derivative

    Get PDF
    Heat and mass transfer analysis in magnetite molybdenum disulphide nanofluid of grade two is studied. MoS2 powder with each particle of nanosize is dissolved in engine oil chosen as base fluid. A generalized form of grade-two model is considered with fractional order derivatives of Caputo and Fabrizio. The fluid over vertically oscillating plate is subjected to isothermal temperate and species concentration. The problem is modeled in terms of partial differential equations with sufficient initial conditions and boundary conditions. Fractional form of Laplace transform is used and exact solutions in closed form are determined for velocity field, temperature and concentration distributions. These solutions are then plotted for embedded parameters and discussed. Results for the physical quantities of interest (skin friction coefficient, Nusselt number and Sherwood number) are computed in tables. Results obtained in this work are compared with some published results from the open literature

    Regulation of TNF-α and NF-κB activation through the JAK/STAT signaling pathway downstream of histamine 4 receptor in a rat model of LPS-induced joint inflammation.

    Get PDF
    Histamine 4 receptor (H4R) is a novel target for the pharmacological modulation of histamine-mediated immune signals during inflammatory diseases. The purpose of this study was to assess the effects of the H4R agonist 4-methylhistamine dihydrochloride (4-MeH) and antagonist JNJ7777120 (JNJ) in the inflamed rat knee. Animals were fasted for 18h before a single dose of 4-MeH or JNJ (30mg/kg) was administered intraperitoneally (i.p.), both followed by intra-articular (i.a.) injection of LPS 2h later. Blood and synovial fluid were collected after a short incubation period and TNF-α, NF-κB, and IkB-α levels were measured via flow cytometry. Additionally, we assessed the effects of H4R engagement on the expression of IL-1β, TNF-α, and NF-κB mRNAs and the protein levels of TNF-α, NF-κB, JAK-1, and STAT-3 in the inflamed knee tissue. These results revealed increased TNF-α and NF-κB expression and decreased IkB-α levels in both the LPS alone and 4-MeH treated groups in whole blood and synovial fluid. Further, IL-1β, TNF-α, and NF-κB mRNA levels were significantly increased and western blot analysis confirmed increased expression of TNF-α, NF-κB, JAK-1, and STAT-3 in both LPS and 4-MeH treatment groups. Furthermore, these increases were completely inhibited in the inflamed knee tissue of the JNJ-treated group. Thus, the inhibition of inflammatory mediators and signaling pathways by the H4R antagonist JNJ suggests the anti-arthritic importance of this molecule

    Thermodynamic and technoeconomic comparative justification of a waste heat recovery process with integration of multifluid and indirect evaporative cooler

    Get PDF
    For a well-developed, efficient and feasible system, it is necessary to produce power generation enormously with a reduction in harmful emissions like Carbon dioxide (CO2), Carbon monoxide (CO), Nitrogen (N), Nitrogen oxide (NOx), and Sulphur dioxide (SO2). Waste heat gases emit directly into an environment, it has many adverse effects on the environment including global warming, environmental pollution, and effect on human health as well. Researchers believe that a thermally efficient system could be achieved by converting waste heat gases into net power output. From this system, the efficiency obtained is 5% to 8% unable to meet the space and cost demands of this waste heat recovery (WHR) system. For waste heat recovery, the most typical cycles used for this are the Rankine cycle and Brayton cycle. Even though these are the best cycles but their efficiency is not as such maximum. By observing all these aspects, there is a different way of recovering waste heat and that is an indirect evaporative cooler (IDE). An indirect evaporative cooler is beneficial in terms of enormous power generation, getting maximum efficiency, low operating cost, and acquiring a sustainable system. The focus of current research was to recover industrial waste heat gases exhausted from SP boilers in the cement industry. ASPEN HYSYS software is used for generating a waste heat recovery model that further operates on the Maisotsenko cycle (M cycle). The topping cycle and bottoming cycle are used in this model. Both the working fluid air and binary mixture CO2-C7H8 operated in a model. By manipulating the model with working fluid air, this system generated a net power output of 68.53 MW with 35.44% thermal efficiency. Integrating the model with a binary mixture of CO2-C7H8 permits 48.59 MW output power with a 38.57% efficiency value. Comparison analysis is performed for extracting the best optimal parameters with extreme power generation and the greatest efficiency value. The industrial operating parameters of the Bestway cement industry operated in this developed model present 38.04 MW and 30.63 MW of power generation with 27.78% and 27.77% efficiency by executing both fluids air and CO2-C7H8 mixture. A techno-economic analysis (TEA) is performed for this entire waste heat recovery system which exhibits a cost of $30/MWh along 3 years payback period

    Methyl 4-hy­droxy-2-meth­oxy­carbonyl­methyl-1,1-dioxo-1,2-dihydro-1λ6,2-benzothia­zine-3-carboxyl­ate1

    Get PDF
    There are two independent mol­ecules in the asymmetric unit of the title compound, C13H13NO7S, which have almost identical geometries. The thia­zine ring adopts a sofa conformation in both mol­ecules and the mol­ecular conformations are stabilized by intramolecular O—H⋯O hydrogen bonds. Inter­molecular C—H⋯O hydrogen bonds stabilize the crystal packing

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore